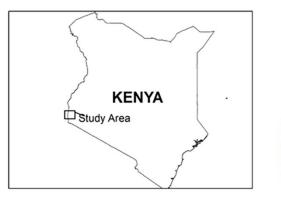
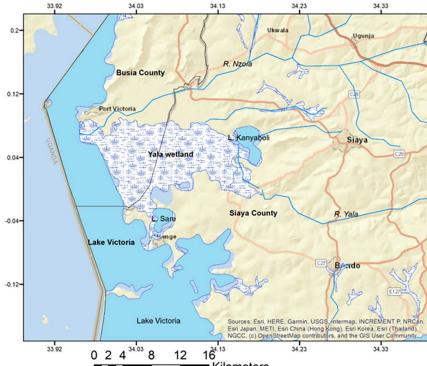
Carbon dynamics and greenhouse gas exchange in Papyrus (Cyperus papyrus L.) dominated wetlands in the Lake Victoria region (Kenya)



Contributors:

Alfred Otom ^{1,2,3,}, Benson Odera¹, Jan Segers³, Laetitia Greiner², Yannick Stroobandt², Alberto V Borges ⁴, Dennis Ochuodho ¹, Ivan Janssens ³, Marilyn Roland ³, and Steven Bouillon ²



Study area: Yala swamp lake Victoria

Source: Githiora et al., 2023

Largest freshwater wetland within Kenya

- Area coverage of the wetland 175 km²
- Floating papyrus mats
- Papyrus rooted in the sediment
- Threats to the wetland ecosystem



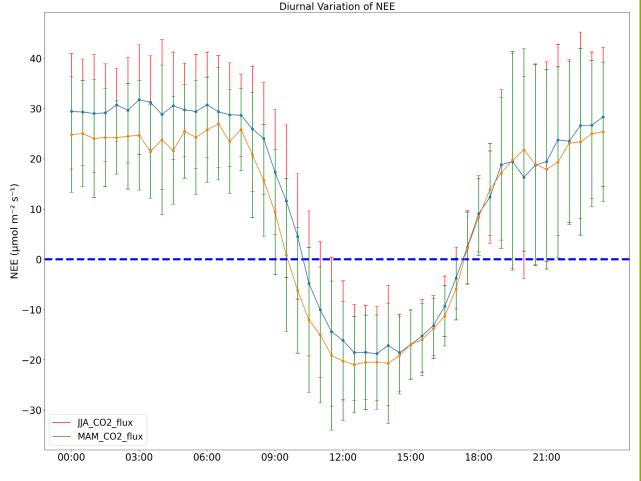
Objectives

- Quantify net ecosystem carbon dioxide (CO₂) fluxes within Yala wetland ecosystem
- Quantify methane (CH₄) fluxes arising from sediment ebullition, water-air interface diffusion and plant mediated pathways
- Estimate carbon stocks in vegetation and sediments, constrain carbon sources to aquatic and sediment C pools

Seasonal variations of Temperature, photosynthetic photon flux density (PPFD), Precipitation and Net Ecosystem Exchange (NEE)

Period March to August NEE:

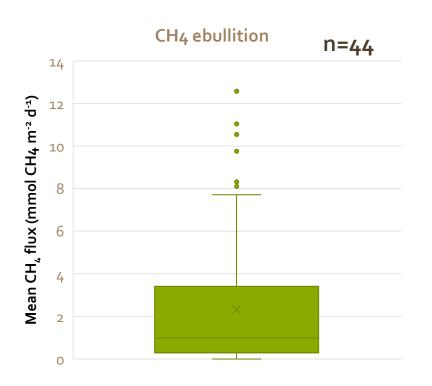
Positive:

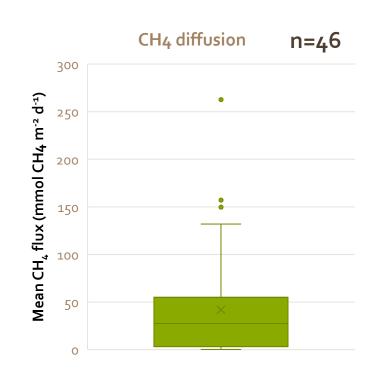

Mean=23.92 μ mol CO₂ m⁻² s⁻¹ Range [0.05 to 82.10] μ mol CO₂ m⁻² s⁻¹

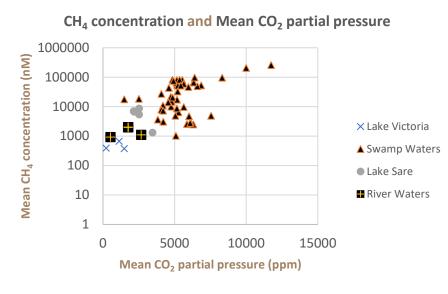
Negative:

Mean= -16.02 μ mol CO₂ m⁻² s⁻¹ Range [-62.78 to -0.01] μ mol CO₂ m⁻² s⁻¹

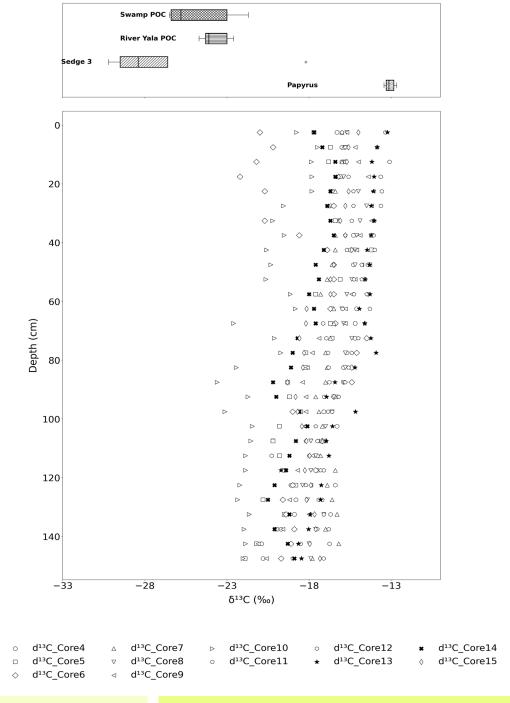
Period under consideration, NEE is positive


Diurnal Net Ecosystem Exchange




March to August 2025

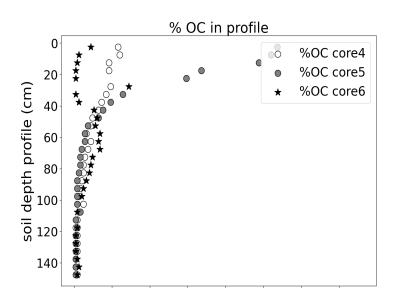
- Preliminary deduction:
 - During daytime, the swamp acts as a sink for
 CO2 and at night source
 - Loiselle et al. (2006): Kirinya Uganda (Papyrus dominated): During nighttime 10–15 μmol CO₂ m⁻² s⁻¹ & daytime uptake 35–37 μmol CO₂ m⁻² s⁻¹ (one week data in September)
 - Saunders et al. (2007): Jinja Uganda Peak, midday rates of NEE approximately 40 μmol CO2 m-2 s-1, while night time losses 10 20 μmol CO2 m-2 s-1 hence net sink
 - Kariuki (2012): Naivasha Midday CO2 uptake was 24 28 μmol CO₂ m⁻² s⁻¹ (Conclusion NEE for the papyrus swamp was positive indicating a carbon source)

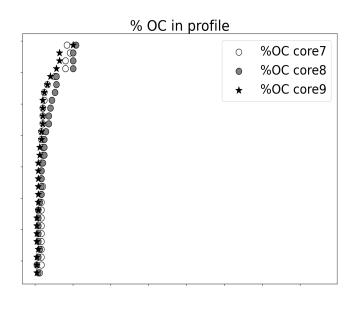

Ebullition and Diffusion of Methane

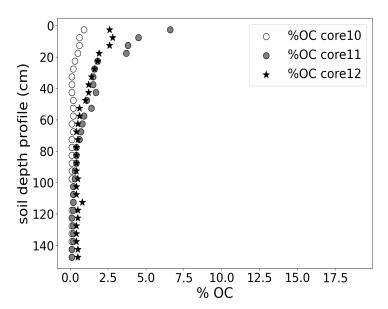
- Median CH₄ ebullition (Sep-Oct) and diffusion fluxes 0.99 and 27.9 mmol m⁻² d⁻¹ respectively
- · Gas fluxes dominated by diffusion as compared to ebullition
- Low mean CH4 concentration in river while swamp waters have highest concentrations

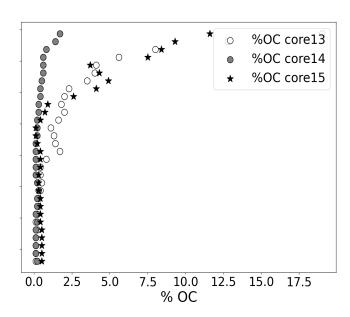
Spatial variation δ^{13} C in the sediment

Ranges for C₄ within wetland lies -15 to -10% while C₃ up to -26%


C3 includes Typha and Phragmites while C4 is predominantly Papyrus and Vossia


Footprints of C4 predominate in the upper layers (\simeq 40cm) as indicated by $\delta^{13}C$


- Up to approximately 4ocm is richer
 OC
- Vegetation detritus & deposition from overlying water column
- R² = 0.5283, about 52 % of the variance in OC is due to depth


Sediment %OC R² = 0.5283 0.0 40.0 40.0 100.0 120.0 140.0 0.0 5.0 10.0 15.0 20.0

Percent organic carbon in sediment

Summary and conclusion

Diurnal shift: swamp is a sink of CO2 by day, source by night and for the entire period under consideration it's a source as indicated by NEE

CH4 fluxes dominated by ebullition with the exclusion of plant mediated transfer

C₄ (Papyrus, Vossia) dominate OC inputs, particularly near the surface; deeper layers sedimentary sources dominate OC inputs

Appreciation and Acknowledgements

- Thanks to participating Institutions including
 - 1. Jaramogi Oginga Odinga University of Science and Technology
 - 2. KU Leuven
 - 3. University of Antwerpen
 - 4. Université de Liège

 Special thanks to the funders of this ongoing project through Institutional University Cooperation (IUC) research grant from VLIR-UOS

Comments and Questions

ASANTE

BEDANKT

MERCI

THANKYOU