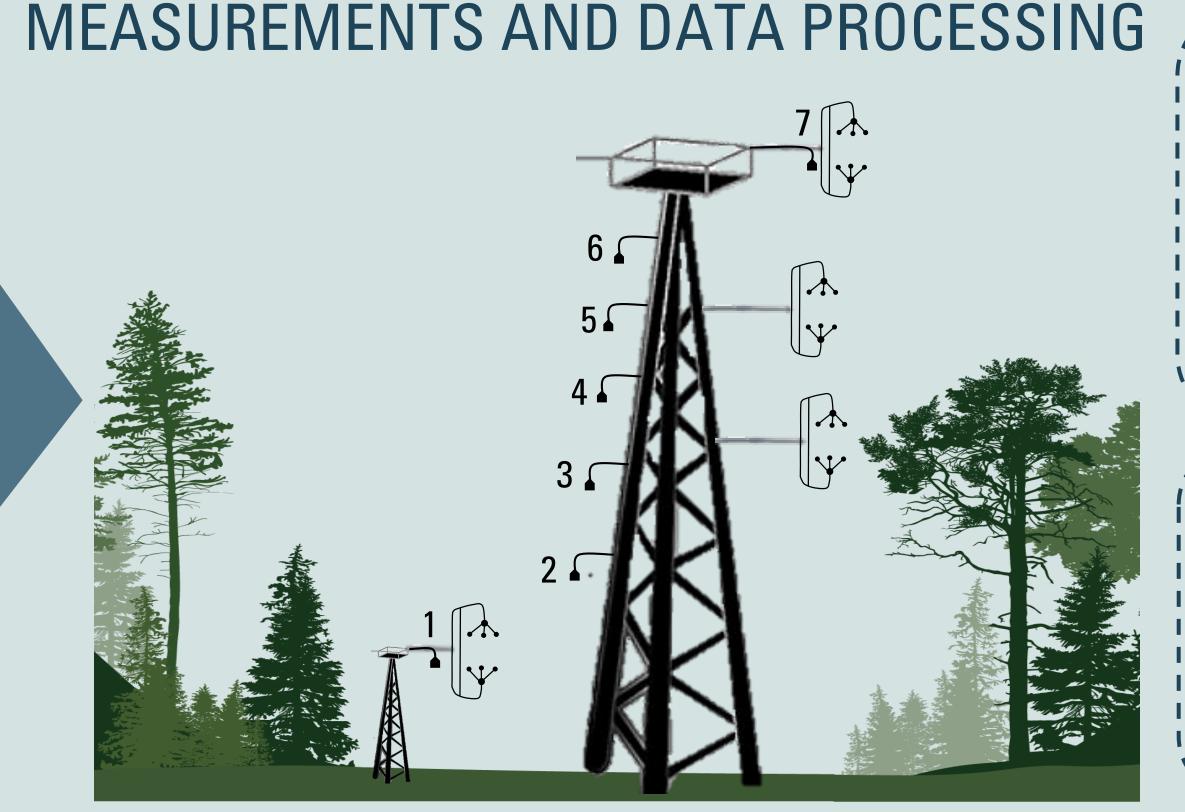
From forest to atmosphere: towards a more comprehensive assessment of BVOC exchanges in a mixed temperate forest

Clément Dumont^{1*}, Bert Verreyken^{1,2}, Niels Schoon², Crist Amelynck^{2,3} and Bernard Heinesch¹

¹Gembloux Agro-Bio Tech, University of Liège, Belgium

²Royal Belgian Institute for Space Aeronomy, Belgium ³Department of Chemistry, Ghent University, Belgium



CONTEXT & OBJECTIVES _

- Forests are major sources of biogenic VOCs (BVOCs), precursors of air quality and climate related substances (0₃, SOA).
- Forest/atmosphere BVOC exchange is often bidirectional; above canopy fluxes result from a variety of processes along the soil-canopy-atmosphere continuum.
- Uncertainties remain regarding the diversity, magnitude, and temporal variability of BVOC exchanges.
 A better characterization is needed for improved BVOC emission, air quality and climate modelling.

*Contact: clement.dumont@uliege.be

'Set-up

- Site: Vielsalm station, Belgium mixed temperate forest with a flux tower (ICOS site BE-Vie)
- Period: 3-years, from Spring to Autumn
- Fluxes: BVOC fluxes at 51 m and 3 m above ground, measured by PTR-TOF-MS (PTR-TOF-4000) + eddy covariance
- Profiles: BVOC conc. (7 levels) + turbulence (4 sonic anemo.)

Processing

- Development of a new open-source pipeline for quantifying VOC mixing ratios and fluxes
- Identification of 51 BVOCs with significant fluxes: low-mass oxygenated compounds, terpenoids (isoprene, monoterpenes) and oxidation products, from m/z 31.018 m/z 205.195

RESULTS

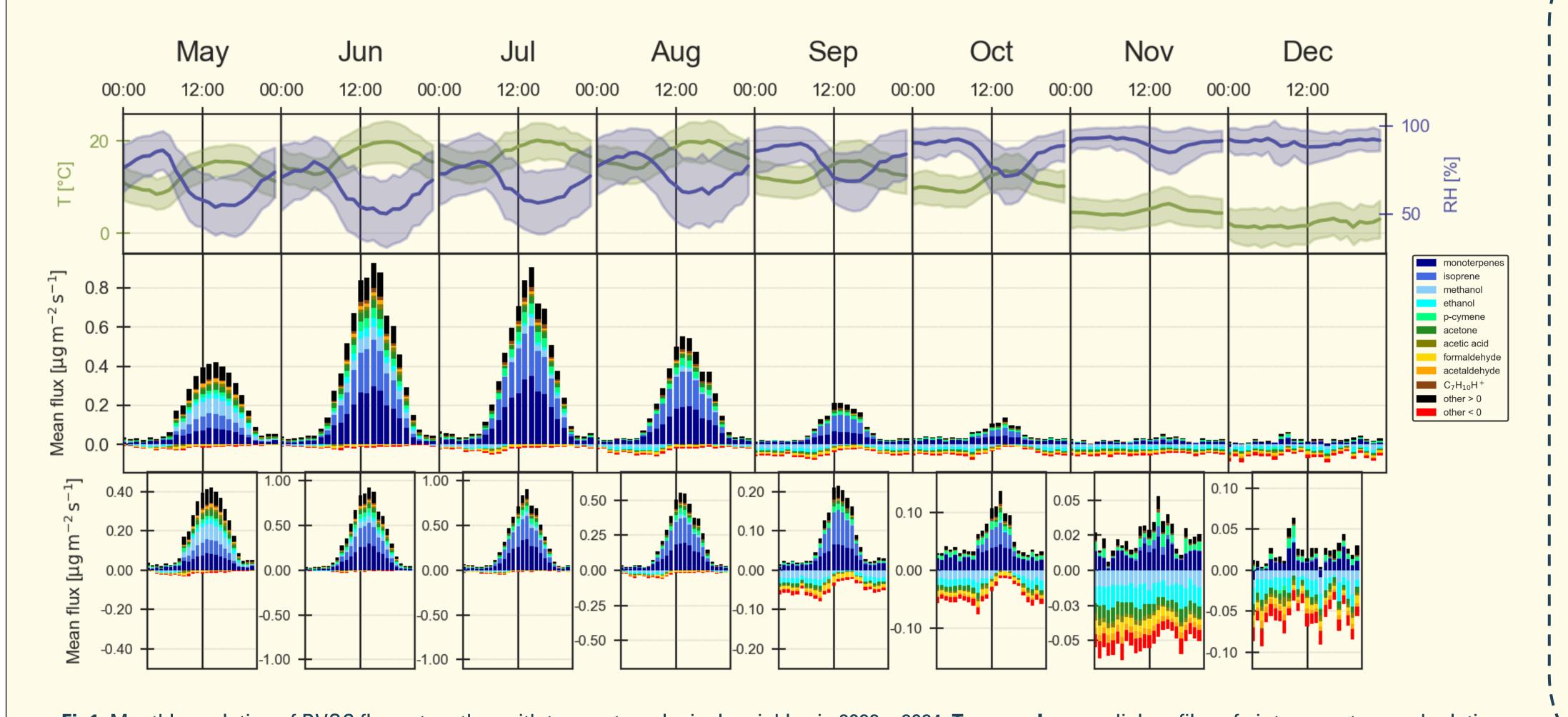


Fig1. Monthly evolution of BVOC fluxes together with two meteorological variables in 2022 – 2024. **Top panel**: mean diel profiles of air temperature and relative humidity. **Middle panel**: mean diel above-canopy fluxes of the 10 most exchanged BVOCs; remaining compounds grouped into emission (other > 0) and deposition (other < 0) categories. **Lower panel**: same as middle panel, but with a variable y-axis highlighting depositions.

A balance between emissions and depositions

Seasonal evolution

- The forest acts as a **net source of BVOCs** into the atmosphere (total BVOC emission $\approx 0.37\%$ of CO₂ uptake)
- Isoprenoid emissions peaking in summer, lowmass BVOC emissions highest in spring
- From autumn onwards, emissions decline and are outweighed by non-negligible depositions

Diurnal evolution

Oct

- Deposition mainly at night for low-mass bidirectional BVOCs (e.g. methanol, ethanol,...) and partly enhanced by relative humidity
- Around **sunrise**: **shift from** net **sink** to net **source** for bidirectional compounds
- Different sensitivities to environmental conditions (light (in)dependent emissions)

Source localization: below-canopy fluxes \approx 10% of above-canopy fluxes (not shown)

Nov

Dec

Complex in-canopy processes

- Observed concentrations = combined effects of emission, uptake, photochemistry, and atmospheric transport
- Coupled O_3 NO_x evolution: daytime NO_2 photolysis produces O_3 , which is later consumed by NO
- Ozone vertical gradient: lowest concentrations at ground level due to continuous deposition
- Isoprene profiles: driven by daytime production, with maximum concentrations near the canopy
- MVK+MACR: markers of isoprene oxidation, with delayed maxima observed at higher altitudes
- Similar observations available for dozens of BVOCs

Sep

Aug

Fig2. Monthly median diel evolution of trace gas concentrations at the top of the canopy (shaded lines) and vertical profiles (contour plots) for years 2022 – 2024.

Perspectives

- Additional vertical profiles of NO_x concentrations: improved characterization BVOCs-O₃-NO_x interactions
- BVOC dry deposition: partitioning stomatal, cuticular and soil contributions using above- vs. below-canopy and daytime vs. nighttime fluxes combined with resistance analogies
- In-canopy processes: improved understanding of complex interactions through 1-D modelling (FORCAST)
- Vertical localization of sources and sinks by integration of concentration profiles and turbulence data into Lagrangian inverse modelling

PREPRINT OF THE PRINT OF THE PR

May

Jun

Code and Data availability

These results are part of a recently submitted data paper. Open-source access is provided to the flux processing tool and to the flux and profile datasets.

